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This paper concemns the effects of random error in numerical measurements
of risk factors {covariates) in relative risk regressions. When not dependent on
outcome (nondifferential), such error usually attenuates relative risk estimates
{shifts them toward one) and leads to spuriously narrow confidence intervals.
The presence of measurement emor also reduces precision of estimates and
power of significance tests. However, significance levels obtained by using the
approximate measurements are usually valld and as poweriul as possible given
the measurement error. The attenuation in risk estimate depends not only on the
size (variance) of the measurement error, but also on its distributional form, on
whether it is dependent on the frue level of the risk factor (whether it is of
“Berkson” type), on the variance and distributional form of true levels of the risk
factor, on the functional form of the regression (exponential or linear), and on the
confounding variables Included in the model. Error in measuring confounding
variables leads to loss of control of confounding, leaving residual bias. Uncom-
plicated techniques of correcting the effects of measurement error in simple
models in which distributions are assumed normal are available in the statistical
literature. For these corrections, information on measurement error variance Is
required. Some approaches appropriate for more general models have been
proposed, but these appear to be insufficlently developed for routine application.

regression analysis; risk; statistics

Once a causal association between a
risk factor (covariate) and disease occur-
rence is considered likely, interest often
focuses on the quantitative relation with
risk—for a given change in the level of the
covariate, what is the change in risk? For
occupational and environmental pollu-
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tants, this exposure-response relation is a
necessary basis from which standards of
exposure carrying “acceptable” risks can be
determined.

All estimates of relations between co-
variates and disease made from epidemio-
logic studies require estimates of the co-
variate for persons or groups of persons in
the study. There is almost always a possi-
bility of error in these measurements. We
are concerned here with covariate measure-
ments on a numerical scale. In this case,
the amount by which the measurement dif-
fers from the “true” level (often hypothet-
ical) is called measurement error. The no-
tion of truth here is not absolute (such as
a biologically effective dose), but will de-
pend upon context. Usually it will represent

1176

ED_004983_00003201-00001

LLOZ ‘Z 48G0ia0 Ho AlisieAlun Alows Je Bio sipuinolpioxo afe Wol) papeo|umog



EFFECTS OF MEASUREMENT ERRORS ON RELATIVE RISK ESTIMATES 1177

the level that would have been observed
had the subject worn an accurate personal
dosimeter throughout his or her life. The
error may be systematic (constant for all
persons in the study), random (so that the
average of many replicated measurements
converges to the true covariate value), or a
combination of both. This paper concerns
random error.

Willett (1) argues the importance of ran-
dom covariate measurement error in epi-
demiology. The aim of this paper is to pro-
vide an accessible overview of the extant
statistical results on the effects of this er-
ror, and to discuss their relevance for typi-
cal epidemiologic contexts.

A SIMPLE MEASUREMENT ERROR MODEL
FOR RELATIVE RISK REGRESSION

For cohort studies with times of disease
occurrence observed, disease rate (hazard)
ratios may be regressed on covariates using
Cox regression. For case-control studies in
which controls are chosen from among per-
sons surviving without disease to the age at
which the case is diagnosed (i.e., individ-
ually matched or closely stratified by age),
essentially the same model is appropriate.
To be consistent with the relevant statis-
tical literature (2), we call these “relative
risk regression models,” although “risk”
here does not imply cumulative incidence,
as it does in some epidemiologic literature,
but rather incidence density.

In the relative risk regression model, dis-
ease risk (incidence density) in persons
with covariate value x is specified relative
to risk in persons with the same age (¢) but
with the covariate at zero (x = 0). This
relative risk (RR) is independent of age and
depends on x through a regression coeffi-
cient 8:

RR(z, t) = r(B, x). (1)

Although the variable ¢ is usually taken as
age, other choices (e.g., time since surgery)
are possible. The covariate x may be a
summary history of levels of the risk factor
experienced up to age ¢, and thus change
with ¢ (e.g., cumulative exposure).

The function r(.) can take several forms;
the most popular is the exponential (closely
related to the logistic model):

RR(x, t) = exp(fx). (2)

The exponential model is assumed in this
paper unless specified otherwise. In this
model, exp(8) represents the proportional
change in risk per unit change in x, which
is the same whatever the original value of
x. In this sense, this model is not affected
by choice of origin (zero) for x.

The effects of measurement error

Defining x as the true covariate and z as
the (approximate) measurement of x, we
may write:

z=2x+e, (3)

where ¢ is an additive measurement error.
In the usual (“classical”) measurement er-
ror model, we assume in addition to error
being nondifferential and wholly random
(nonsystematic) that it has a distribution
independent of the true covariate x. To
obtain simple results, we further assume
that the distribution of error e is normal
(Gaussian) with variance ¢ and that the
age-specific distribution of true covariate x
18 normal with mean g, (which may depend
on age) and variance o2 which is indepen-
dent of age.

Under these assumptions, the relation
between relative risk and approximate z
retains the same exponential form as that
between relative risk and true x, but the
“naive” regression parameter, 8%, is attenu-
ated (shifted toward zero), i.e., RR(8*, 2) =
exp(f*z), with | 8* | <|8|. Thus, the pro-
portional change in risk per unit change in
observed approximate level of the covariate
is less than that per unit change in the true
level.

The naive parameter 8* is connected to
8 by the identity:

B* = R, (4)

where R = ¢2/(s? + ¢2). If the variance of
observed measurements (¢ + o%) is writ-
ten o2, R may be reexpressed as o2/o? or
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(62 — ¢2)/d2. R is known as the reliability
of z as a measure of x and is equal to the
square of the correlation of x and z in the
study population. The attenuation is pre-
cisely that for the slope in a simple linear
regression for a numerical outcome when
the regressor is subject to measurement
error (3). The monograph by Fuller (4)
contains an authoritative discussion of this
and many related models for numerical
outcomes.

Table 1 shows the attenuation R in the
relative risk regression parameter § due to
measurement error with standard deviation
(o.) up to two times that of the true co-
variate (o). (It is this relative variation
{a./0.) which determines R, and hence at-
tenuation.) For many contexts, the results
are reassuring: Measurement error with a
standard deviation as large as half of the
standard deviation of the true x results in
an observed regression parameter which is
on average 80 percent of the true value—a
minor bias by most epidemiologic stan-
dards (1).

The naive significance tests against §* =
0 (e.g., score, Wald, or likelihood ratio chi-
square tests) using the crude data and ig-
noring measurement error are valid and
efficient tests for 8 = 0 (5). The tests will,
however, have less power than those based
on the true covariate, since their efficiency
is equal to the reliability R of the measured
covariate (6).

The above and further related results are
given in recent publications in the statisti-
cal literature (7-11).

Paraliels with misclassification

The results given above are consistent
with well-known results for categorical (in
particular dichotomous) covariate mea-
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sures subject to misclassification that is
nondifferential. Relative risks (odds ratios)
are shifted toward 1; tests for association
remain valid, but with reduced power com-
pared with those using data without mis-
classification. Chen (12) provides a recent
review from a statistical perspective. For
ordered categories to which numerical
scores are assigned and over which trends
in risk are to be estimated, the measure-
ment error models discussed above may be
applied, since the results are essentially the
same as those for continuous covariates.

MODELS WITH MANY COVARIATES:
ERRORS IN CONFOUNDING VARIABLES

Even when we are mainly interested in a
single risk factor, we often wish to control
in the analysis for confounding by one or
more additional factors. Further, we may
be interested in investigating several fac-
tors simultaneously. Much of the popular-
ity of relative risk regression models lies in
their capacity to carry out these functions.

Measurement error may be present in
the observed factors of interest and in con-
founders. In an extension of the above
model, we assume a multivariate normal
distribution for true covariates and (inde-
pendently) for errors. This model implies
that measurement error for each covariate
is independent of all true covariates, so
that, for example, error in the factor of
interest does not depend on the true level
of a confounder. Under this assumption,
results for the exponential model analogous
to expression 4 are available (11). Below we
consider the qualitative implication of
these results. For simplicity, we assume
that there is just one confounder, although
the results given extend qualitatively to
many confounders.

If only the factor of interest is subject to

TABLE 1
Attenuation in estimated relatwve risk parameter due to normal measurement error

0.00
1.00

0.10
0.99

0.20
0.96

0.30
0.92

Error o./0.*
Attenuation (R)

0.40
0.86

050
0.80

0.75
0.64

1.00
0.50

1.50
0.31

2.00
0.20

* Ratio of standard deviation of errors e to standard deviation of the true covariate x.
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error, the regression parameter for this co-
variate is attenuated, as in the univariate
case, but this attenuation is more pro-
nounced. Using subscripts 1 and 2 to denote
variables and parameters associated with
the factor of interest and the confounder,
respectively, the naive coefficient of inter-
est §,* = R, .01, where R, is obtained by
replacing ¢ in the formula R = (¢} —
62,)/6% by 62 .0, the variance of 2, condi-
tional on the confounder 2, (see Appendix
for formulae and proof). This variance can
be estimated from the variance of the resid-
uals if z, is regressed on 2z,.

The increase in attenuation occurs even
if the second factor is not associated with
the disease and has thus been unnecessarily
included as a confounder. This may hap-
pen, for example, in occupational studies
when length of service is unnecessarily in-
cluded as a possible confounder (to guard
against “survivor effect” confounding) and
interest is in a measure, for example, cu-
mulative exposure, which is strongly cor-
related with length of service. Of course, if
length of service is a risk factor indepen-
dent of the effect of cumulative exposure,
not including it will introduce confounding
bias.

If the confounder is measured with error,
then its inclusion in the regression can only
partially control for its effect, leaving “re-
sidual” confounding. Thus, if the variable
of interest is measured without error, the
naive coefficient of interest 5,* will lie be-
tween 8, and the confounded coefficient 8,1
which would be obtained if the confounder
were omitted. With notation as before,
B1* = Rz16: + (1 — Ry1)B:T (see Appen-
dix). Tests of the statistical significance of
the covariate of interest which do not ac-
count for this error are not valid. Alterna-
tive tests are available (11). If the variable
of interest is also subject to error, then the
residual confounding is coupled with the
pronounced attenuation discussed above:
B:1* = Rojy(Ry28:) + (1 — Re1)Bit  (see
Appendix). If the two errors are correlated
(as is likely, for example, in estimating
dietary intakes of components present in
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the same foodstuffs), the extent and direc-
tion of the changes may be altered.

The effects of misclassification in di-
chotomous measures of a variable of inter-
est and a confounder (13) and those of
measurement error on partial correlation
coefficients (14) are similar gualitatively to
those described above.

CORRECTING FOR ATTENUATION DUE TO
MEASUREMENT ERROR

Method

If R (or 62, from which R may be deduced)
is known, a maximum likelihood estimate
and confidence interval for the “true” 8 in
the univariate exponential relative risk
model, expression 2, may be obtained by
applying a correction factor (1/R) to the
naive maximum likelihood estimate 8*, and
its confidence interval may be obtained
from the observed data z, i.e.,

B = B*/R. (5)

B* will usually be obtained using a condi-
tional logistic or Cox regression package.
There is an equivalent matrix formula for
correcting for measurement error in the
multivariate model (11).

Usually R must be estimated. We may do
this by estimating ¢? from a validity study
in which approximate measures of the co-
variate are compared with a “gold stan-
dard,” or from a reliability study of repeated
independent approximate measures of the
covariate in the same individuals. The re-
quired independence of repeated measure-
ments (absence of error systematic to an
individual) is often difficult to achieve (1).
Given o2, we may estimate R as (o —
o?)/c?, where o? is the (age-specific) vari-
ance of z in the main study.

Where information from which o is es-
timated is sparse, 80 that uncertainties in
o and hence R may not be ignored, the
corrected confidence limits should be re-
fined so that the extra uncertainty is re-
flected in a wider interval (11). In addition,
the “corrected” estimate obtained by
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expression 5 may retain important bias be-
cause of the small size of the validity or
reliability study. This and the additional
imprecision introduced into the estimates
may outweigh the probable reduction in
attenuation. Because of these difficulties,
the best approach may often be to carry out
sensitivity analyses in which the conse-
quences of measurement errors of various
magnitudes are investigated, using the
method in which R is assumed known.
Choices of R used in these analyses may be
guided by general plausibility considera-
tions, as well as any data available.

Example

As part of a broader study, dietary in-
takes were estimated, using dietary history
gquestionnaires, in 171 cases of colon cancer
and 171 controls, individually matched for
age and neighborhood (15-17). The naive
exponential relative risk model was fitted
for this illustration to daily fat intake (in
grams). The first row of table 2 shows the
naive estimate §*, obtained from a condi-
tional logistic regression package. Subse-
quent rows show the effects of correcting
this for measurement error by using expres-
sion 5, assuming the normal classical
model. Corrections for mild (o./0, = 0.1) to
quite severe (o./0, = 1.0) measurement er-
ror are shown. Table 2 also shows the rel-
ative risk predicted because of a difference
in true fat intake of 50 g (exp (508)). As
stated above, the significance level (p =
0.04) is unaltered by correction for mea-
surement error. This also explains why
the lower 95 percent confidence interval
changes very little on correction.

A companion validity study compared
dietary histores of 16 volunteers with de-
tailed weighed food records kept by their
spouses (18). If the latter is taken as the
gold standard, measurement error variance
o2 is estimated as 1,284 g® (95 percent con-
fidence interval 710-2,970). The stratum-
specific variance of observed fat intake o?
was calculated as half the variance of the
171 differences between intakes in cases

ARMSTRONG

TaBLE 2
Colon cancer and fat intake estimates of relatwe risk
regression parameters corrected for normal
measurement error

Corrected estimate (85% confidence

Error*

. interval)t

L Teaw | e
000t 4.6 (0.1-9.1) 1.3 (1.0-16)
010 4.6 (0.1-9.2) 1.3 (1.0-1.6)
0.20 4.8 (0.1-9.5) 1.3 (1.0-1.6)
0.30 5.0 (0.1-9.9) 1.3 (1.0-1.6)
0.40 53(01-106) 1.3(10-1.7)
050 5.8 (0.1-11.4) 1.3(10-1.8)
060 6.3 (0.1-12.4) 1.4 (1.0-19)
0.70 6.9 (0.1-13.6) 14 (1.0-2.0)
0.80 7.5(0.2-14.9) 1.5 (1.0-2.1)
0.90 8.3 (0.2-16 5) 1.5 (1.0-2.3)
100 92 (0.2-18.2) 1.6 (10-2.5)

* Ratio of standard deviation of errors e to standard
deviation of true covariate x.
¥ The first row gives uncorrected (naive) estimates

and matched controls, 2,667 g>. We may
thus estimate ¢Z as 2,667 — 1,284 = 1,383
g*, o./o. as v (1,284/1,383) = 0.96, R as
1,383/2,667 = 0.52, and 8 as 4.6/0.52 = 8.8.
However, since the sampling uncertainty in
o2 ig substantial, R cannot be considered to
be known to be this value. This estimate of
8 is thus not maximum likelihood, and con-
fidence intervals calculated as above would
not reflect uncertainty in ¢Z2. Further, note
that any confounding or other bias present
in the naive estimate 8* will be magnified
by this “correction.”

To keep the illustration simple, we have
not considered additional possibly con-
founding variables. Armstrong et al. (11)
give a fuller analysis and discussion of
this example, including confounders in
particular.

OTHER MEASUREMENT ERROR MODELS

Unfortunately, the simple model for
measurement error described above rarely
applies exactly to data arising in epidemi-
ologic studies. Often the results from this
model will be sufficiently valid to examine
the approximate impact of measurement
error even when assumptions are not met
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EFFECTS OF MEASUREMENT ERRORS ON RELATIVE RISK ESTIMATES 1181

exactly, but if precise corrections are re-
quired or if departures from model assump-
tions are substantial, other models should
be considered.

Linear relative risk models

Investigators may prefer alternatives to
the exponential form (expression 2) of the
relative risk model. In particular, the linear
model, RR = 1 + Bx, is consistent with
some suggested models for carcinogenesis
and provides a better fit to data from some
studies of environmental exposures and
cancer (19). It is less attractive to assume
a normal distribution for errors and co-
variates in the linear relative risk model, in
which choice of zero on the x scale affects
the model and which is only sensibly ap-
plied to covariates taking only nonnegative
values. However, if we proceed with this
working assumption, we can obtain simple
approximate results. We require the further
assumption that mean true covariate u.(t)
is independent of age t. Then the naive
relation remains linear, with coefficient
B8* = [R/{1 + Bu.(1 — R)}]8 (7-9). Because
the normal assumption is usually unrealis-
tic, this relation should be used with special
caution. Nonnormal error models, dis-
cussed below, are more useful for the linear
model.

Nonnormal distribution of measurement
error and of covariates

The results so far depend on measure-
ment error and true covariates being dis-
tributed normally. This is clearly often an
imperfect model since covariates are often
measured on a scale with an origin at zero.
Further, the distributions of many covar-
iates (for example, cumulative exposures to
airborne contaminants) are skewed to the
right, often approximating the lognormal
distribution. In addition, measurement er-
rors may be better represented in a multi-
plicative rather than an additive model: z
= xe, with E(e) = 1. One such model has
measurement error and the true covariate
following a lognormal distribution, inviting
the representation: log(z) = log(x) + log(e).

In this model, taking logarithms has the
effect of returning to the additive formula-
tion, with normal distribution for measure-
ment errors and the true covariate. If log{x)
is taken as the variable of interest, the
simple methods of the preceding section
may thus be applied. In the exponential
model, this implies a true relation: RR(zx,
t) = exp(Blog(x)) = »*, with measurement
error attenuating 8. Since 8 appears as a
power of x, measurement error will alter
the shape as well as the magnitude of the
slope of relations of relative risk to the
covariate (7, 20). For example, a quadratic
relation of lung cancer risk with true pack-
years of exposure to tobacco smoke could
be distorted to a linear form due to this
type of measurement error (21).

The form of the relation between risk
and the (original true) covariate implied by
this model may not fit the data or prior
assumptions of mechanisms, however.
Models in which covariates or measure-
ment errors are skewed but relative risk is
related to the covariate on its original scale
have been discussed explicitly only briefly
in the literature (8), although other more
general approaches (7, 9-11) may be adapt-
able to this situation. Further discussion is
beyond the scope of this paper.

Under nonnormal measurement error
models, naive tests of §* = 0 using the crude
data remain valid tests of 8 = 0, but are no
longer as powerful as some alternatives (5).

Covarate distribution dependent on age

The validity of expressions 4 and 5 de-
pends on the age-specific distributions of
true covariates being normal and the vari-
ance o2 being independent of age. However,
if the covariate affects the disease of inter-
est (i.e., if 8 # 0) or mortality from other
causes, disease or early deaths among
highly exposed subjects will cause a de-
pendence of the distribution of the true
covariate on age (7, 9). In many cases, the
dependence is weak, so that the simple
expressions 4 and 5 remain good ap-
proximations.
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Predictive and structural relations

We have assumed in the above discussion
that the parameter of interest is 38, the true
regression slope in the population, rather
than 8% the naive regression slope in the
population. However, this may not always
be true. For prediction of relative risk in a
person drawn from a population with the
same distributions of the true covariate and
measurement error as the study group, the
naive 8* should be used (22). For this rea-
son, the regression on z involving §8* is
called the “predictive” relation in contrast
to that on x involving 8, which is known as
the “structural,” or in a slightly different
context the “functional” relation (23). To
predict risk in contexts in which either of
these distributions is changed, we can ob-
tain a new predictive coefficient 8* from 8
if the new ¢7 and o2 are known.

Berkson models

Expression 3, in which error e is indepen-
dent of x, is generally called the classical
measurement error model. There is an al-
ternative which was originally proposed for
experimental situations in which the exper-
imenter attempts to set a covariate at a
target value 2z, but because of imprecise
control its true value x may be higher or
lower than z. If the experiment was repli-
cated many times with the same target z,
the true covariate could often be expected
to be distributed with mean 2. This situa-
tion may be represented x = z + e, with ¢
independent of z, and E(x|z) = z. This is
called the Berkson model, after Berkson
(24), or sometimes the “control knob”
model.

Remarkably, in the linear relative risk
regression model with normal measure-
ment error of the Berkson type, the naive
parameter 8* is equal to the true S-—there
is no attenuation. However, 5* estimated
from the approximate {z} has a higher stan-
dard error than B estimated from the true
{x}, and power to test 8 = 0 is reduced.
In the exponential model with normal
Berkson error, there is also no attenuation
providing that the variance «? of e does not
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depend on z (7, 9). To the extent that such
a dependency exists, the naive and true
regression parameters will differ in the ex-
ponential model, not necessarily in the di-
rection of attenuation. Prentice (7) dis-
cusses a model for error of this kind in
which | 8*| > | 81.

The relevance of the Berkson model for
epidemiology is in its application to certain
observational as well as experimental stud-
ies. For example, a single estimate 2z of
exposure is often taken to apply to all work-
ers with the same job title, For each worker,
this is an approximation of their true ex-
posure x. If z is the mean true exposure
(z = z) for this job title, the situation is
analogous to the control knob context
above: e (equal to x — %) is independent of
2, and Berkson’s model applies. However,
the single estimate z of exposure is itself
usually an approximation of the true mean
exposure ¥ among workers with the job
title. The difference (x — z) between this
true mean and the exposure estimate will
often conform to a classical measurement
error model. Thus, most relative risk
regressions drawing on this type of expo-
sure estimation will be subject to both
Berkson and classical types of measure-
ment error.

A similar type of error structure pertains
if numerical measures of a covariate are
used to divide subjects into categories, and
mean level in each category is used in rel-
ative risk regressions. The approximation
involved in this procedure introduces ad-
ditional error of the Berkson type, but
leaves the classical error structure essen-
tially the same. Further, if the width of bins
neither increases nor decreases with 2, o7 is
unlikely to depend on 2, so that in this case
the exponential as well as the linear model
grouping does not cause attenuation.
Grouping does reduce precision, however.

Logistic and other binary regression models

When “logistic” regression is used to ana-
lyze case-control data stratified by age, it
is the (exponential) relative risk model
which is assumed in the underlying popu-
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EFFECTS OF MEASUREMENT ERRORS ON RELATIVE RISK ESTIMATES

lation (2), so that the above results remain
applicable. When logistic or other binary
regression methods are applied to preva-
lence or simple cohort studies with time to
disease occurrence not observed, the rela-
tive risk model described above no longer
applies. More precise, but more computa-
tionally arduous methods of accounting for
measurement error effects in these type of
binary regression models are discussed by
several authors (25-33). When proportions
with the disease are small, however, the
distinction between these and relative risk
models is minor (2), so that the effects of
measurement error would be expected to be
close to those described above.
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APPENDIX

Attenuation of the regression parameter in the
presence of a confounder

In addition to the notation introduced n the text,
we denote the covariance of z; and 2., as ¢,,.4, and the
conditional vanance of z, on z, as o3 |,1, 80 that (given
bivariate normality) o% ., = 0% — o} a/0%. Other
covanances and conditional variances are denoted
hkewise. Then the conditional rehability R, =
o012/ 2 8nd Rajy = 0% 0/0%in. If we further note
that our measurement error model imphes of,, =
0%, .2 and substitute zero covariance between the two
measurement errors into expression 4 of reference 11,
we obtain.

5\‘ = Ruzﬂn + (1 - Rau) (ﬂxlﬁ/afl)ﬁZ (6)

ARMSTRONG

The value of 8,* obtained by omitting the confounder
entirely from the regression can be obtained by letting
Ry — 0, giving

Bit = Ryj2By + (0nn/oh)ba
Substituting back into expression 6 gives

B = Ry (Ri28)) + (1 — R )8t (8)

The remaining results given in the text are special
cases of expressions 6 and 8: if the confounder 18
measured without error, 23 = %3, Ry, = 1, and ,* =
Ri26:; 1if the vanable of interest is measured without
error, z; = x;, Ry s = 1, and

61‘ = ﬁl + (1 - Rzu) (dxl,d/afl)ﬁﬂ =
Rz + (1 — Ry )81, (9)

For an alternative interpretation, note that
G142/ 05 18 the slope v, . of the linear regression of
21 on 22 In particular, expression 7 reduces if the
variable of interest is measured without error to 6,1 =
B1 + Vi1 By, well-known as the effect of omitting a
variable in linear regression (34).

(7
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